Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Azido(1,1-diphenylmethanimine- κN)-[hydridotris(pyrazolyl- κN^2)borato]-(triphenylphosphine- κP)ruthenium(II) diethyl ether solvate

Chia-Her Lin,^a Ting-Shen Kuo,^b Hung-Chun Tong,^c Chih-Yung Chen Hsu^c and Yih-Hsing Lo^c*

^aDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan, ^bDepartment of Chemistry, National Normal Taiwan University, Taipei 106, Taiwan, and ^cDepartment of Chemical Engineering, Tatung University, Taipei 104, Taiwan Correspondence e-mail: yhlo@ttu.edu.tw

Received 28 October 2008; accepted 3 November 2008

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.050; *wR* factor = 0.113; data-to-parameter ratio = 14.1.

The reaction of $[RuCl(C_9H_{10}BN_6)(C_{18}H_{15}P)_2]$ with benzophenone imine in methanol, in the presence of sodium azide, leads to the formation of the title compound, $[Ru(C_9H_{10}BN_6)-(N_3)(HN=CPh_2)(C_{18}H_{15}P)]\cdot C_4H_{10}O$, which crystallizes as the diethyl ether solvate. In the crystal structure, the Ru atom is coordinated by three N atoms of one hydridotris(pyrazoly)-borate anion, one P atom of one triphenylphosphine ligand, one N atom of the azide anion and one N atom of the benzophenoneimine ligand in a slightly distorted octahedral geometry. The azide anion is almost linear [177.0 (5)°], with an Ru–N–N angle of 125.9 (3)°. There is a small difference between the N–N distances [1.200 (5) and 1.164 (5) Å], the longer bond being adjacent to the Ru atom.

Related literature

For general background, see: Agrell (1971); Alcock *et al.* (1992); Burrows *et al.* (2001); Moloy & Petersen (1995); Pavlik *et al.* (2005); Slugovc *et al.* (1997); Trofimenko *et al.* (1993). For related structures, see: Dori & Ziolo (1973); Gemel *et al.* (1996); Meyer *et al.* (1998); Huynh *et al.* (2003); Slugovc *et al.* (1998).

Experimental

Crystal data

$Ru(C_{9}H_{10}BN_{6})(N_{3})(C_{13}H_{11}N)-(C_{18}H_{15}P)]\cdot C_{4}H_{10}O$ $M_{r} = 873.76$ Friclinic, <i>P</i> I $u_{r} = 11.7387 (12) \text{ Å}$	$\beta = 81.716 (2)^{\circ}$ $\gamma = 88.040 (3)^{\circ}$ $V = 2102.9 (4) \text{ Å}^{3}$ Z = 2 Mo Key radiation
$ \begin{aligned} & \tau = 11.7387 (12) \text{ A} \\ & \sigma = 13.0535 (13) \text{ Å} \\ & \varepsilon = 14.7187 (15) \text{ Å} \\ & \alpha = 70.445 (2)^{\circ} \end{aligned} $	$\mu = 0.46 \text{ mm}^{-1}$ T = 200 (2) K $0.19 \times 0.07 \times 0.02 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer Absorption correction: multi-scan	16858 measured reflections 7382 independent reflections

Absorption correction: multi-scan (Blessing, 1995) $T_{min} = 0.918, T_{max} = 0.989$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ 523 parameters

 $wR(F^2) = 0.113$ H-atom parameters c

 S = 1.01 $\Delta \rho_{max} = 1.75$ e Å⁻³

 7382 reflections
 $\Delta \rho_{min} = -0.56$ e Å⁻³

523 parameters H-atom parameters constrained

4895 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.061$

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *HKL DENZO* and *SCALEPACK* (Otwinowski & Minor 1997); data reduction: *HKL DENZO* and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 1999).

This research was supported by the National Science Council, Taiwan (NSC 97-2113-M-036-001-MY2) and in part by the project of specific research fields of Tatung University, Taiwan (B96-C07-081) and the project of specific research fields in Chung Yuan Christian University, Taiwan (under grant CYCU-97-CR-CH).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2120).

References

- Agrell, I. (1971). Acta Chem. Scand. 25, 2965–2974.
- Alcock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906–2908.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Burrows, A. D. (2001). CrystEngComm, 46, 1-5.
- Dori, Z. & Ziolo, R. F. (1973). Chem. Rev. 73, 247-254.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 16, 3998–4004.
- Huynh, M. H. V., Meyer, T. J., Labouriau, A., Morris, D. E. & White, P. S. (2003). J. Am. Chem. Soc. 125, 2828–2829.
- Meyer, K., Bendix, J., Metzler-Nolte, N., Weyhermüller, T. & Wieghardt, K. (1998). J. Am. Chem. Soc. 120, 7260–7270.
- Moloy, K. G. & Petersen, J. L. (1995). J. Am. Chem. Soc. 117, 7696-7710.
- Nonius (1999). COLLECT. Nonius B. V, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pavlik, S., Mereiter, K., Puchberger, M. & &Kirchner, K. (2005). Organometallics, 24, 3561–3575.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831. Slugovc, C., Sapunov, V. N., Wiede, P., Mereiter, K., Schmid, R. & Kirchner, K. (1997). J. Chem. Soc. Dalton Trans. pp. 4209–4216. Trofimenko, S. (1993). Chem. Rev. 93, 943-980.

Acta Cryst. (2008). E64, m1511-m1512 [doi:10.1107/S1600536808036039]

Azido(1,1-diphenylmethanimine- κN)[hydridotris(pyrazolyl- κN^2)borato](triphenylphosphine- κP)ruthenium(II) diethyl ether solvate

C.-H. Lin, T.-S. Kuo, H.-C. Tong, C.-Y. Chen Hsu and Y.-H. Lo

Comment

The hydridotris(pyrazoly)borate anion (Tp,HB(pz)₃) has been used by Trofimenko as a ligand in various transition metal complexes (Trofimenko,1993). Ruthenium(II) hydridotripyrazolylborate complexes, Ru(Tp), are of interest for stoichiometric and catalytic transformations of organic molecules (Pavlik *et al.*, 2005). The complex [Ru(Tp)Cl(PPh₃)₂] (Alock *et al.*, 1992) has been used as the starting material for the synthesis of several complexes because the chloride atom and the PPh₃ group can be easily substituted (Slugovc *et al.*, 1997; Moloy & Petersen, 1995; Burrows, 2001). On the other hand, the azide anion N₃⁻ is a versatile ligand because it shows a variety of coordination modes and compounds with this ligand shows interesting thermal and photochemical reactivities (Dori & Ziolo, 1973; Meyer *et al.*, 1998; Huynh *et al.*, 2003).

In the crystal structure of the title compound, the environment about the ruthenium metal center corresponds to a slightly distorted octahedron and the bite angle of the Tp ligand leads to an average N—Ru1—N angle of 86.3°, which is only slightly distorted from 90° (Fig. 1). The three Ru1—N(Tp) bond lengths of 2.077 (3), 2.114 (4), and 2.084 (4) Å) are slightly longer than the average distance of 2.038 Å observed in other ruthenium Tp complexes (Gemel *et al.* 1996; Slugovc *et al.* 1998). The Ru1—N7 and N7—C10 bond lengths of 2.053 (3) and 1.304 (5) Å correspond to a single Ru—N and a double C=N bond. The angles around C10 of 122.3 (4)°, 118.6 (4)° and 119.1 (4)° indicate a sp^2 hybridization.

The azide anion is almost linear $(177.0 (5)^{\circ})$ and is coordinated to Ru with an Ru—N(8)—N(9) angle of 125.9 (3)°. There is a small difference between the N—N distances [1.200 (5) and 1.164 (5) Å], the longer being adjacent to the Ru atom. It is also noted the title complex shows a $v_{as}(N_3)$ stretching band in a lower energy region, at 2036 cm⁻¹, compared with the typical values of these bands in azido complexes (2120–2030 cm⁻¹; Agrell, 1971).

Experimental

To a solution of $[Ru(Tp)Cl(PPh_3)_2]$ (3.95 g, 4.50 mmol) in CH₃OH (100 ml), an excess of benzophenoneimine (7.9 ml, 45.0 mmol) and NaN₃ (2.93 g, 45.0 mmol) were added and the solution was refluxed for 120 min. Afterwards the reaction mixture was concentrated to approximately 10 ml and cooled to 253 K. The yellow precipitate which has formed was filtered off, washed with CH₂Cl₂and was dried under reduced pressure to give the title compound (2.34 g, 65% yield). The bright-yellow crystals used for X-ray structure analysis were obtained within 3 days by slow diffusion of diethyl ether into a solution of the title compound in CH₂Cl₂ at 273 K.

Refinement

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 - 0.99 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$, B—H = 1.0 Å and $U_{iso}(H) = 1.2U_{eq}(B)$, and N—H = 0.88 Å and $U_{iso}(H) = 1.2U_{eq}(N)$.

Figures

Fig. 1. Molecular structure of (the title compound with labelling and displacement ellipsoids drawn at the 30% probability level (H atoms are shown as spheres of arbitrary radius).

Azido(1,1-diphenylmethanimine- κN)[hydridotris(pyrazolyl- κN^2)borato](triphenylphosphine- κP)ruthenium(II) diethyl ether solvate

Crystal data

$[Ru(C_9H_{10}BN_6)(N_3)(C_{13}H_{11}N)(C_{18}H_{15}P)] \cdot C_4H_{10}O$	Z = 2
$M_r = 873.76$	$F_{000} = 904$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.380 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 11.7387 (12) Å	Cell parameters from 16922 reflections
b = 13.0535 (13) Å	$\theta = 2.4 - 22.8^{\circ}$
c = 14.7187 (15) Å	$\mu = 0.46 \text{ mm}^{-1}$
$\alpha = 70.445 \ (2)^{\circ}$	T = 200 (2) K
$\beta = 81.716 \ (2)^{\circ}$	Prism, red
$\gamma = 88.040 \ (3)^{\circ}$	$0.19 \times 0.07 \times 0.02 \text{ mm}$
$V = 2102.9 (4) \text{ Å}^3$	

Data collection

Nonius KappaCCD diffractometer	7382 independent reflections
Radiation source: fine-focus sealed tube	4895 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.061$
T = 200(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
CCD rotation images, thick slices scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (Blessing, 1995)	$h = -10 \rightarrow 13$
$T_{\min} = 0.918, T_{\max} = 0.989$	$k = -13 \rightarrow 15$
16858 measured reflections	$l = -16 \rightarrow 17$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.113$	$w = 1/[\sigma^2(F_o^2) + (0.0454P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\text{max}} = 0.001$
7382 reflections	$\Delta \rho_{max} = 1.75 \text{ e} \text{ Å}^{-3}$
523 parameters	$\Delta \rho_{\text{min}} = -0.56 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
B1	0.8157 (5)	0.8932 (4)	0.7251 (4)	0.0386 (15)
H1'	0.8125	0.9641	0.7376	0.046*
C1	0.8247 (4)	0.8636 (4)	0.4879 (3)	0.0354 (12)
H1	0.8285	0.8213	0.4462	0.043*
C2	0.8292 (4)	0.9767 (4)	0.4569 (4)	0.0424 (13)
H2	0.8359	1.0254	0.3918	0.051*
C3	0.8219 (4)	1.0027 (4)	0.5398 (4)	0.0427 (13)
Н3	0.8236	1.0743	0.5426	0.051*
C4	1.0523 (4)	0.7072 (4)	0.7588 (3)	0.0367 (12)
H4	1.0886	0.6421	0.7554	0.044*
C5	1.1011 (4)	0.7847 (4)	0.7874 (3)	0.0426 (13)
Н5	1.1747	0.7834	0.8073	0.051*
C6	1.0193 (4)	0.8638 (4)	0.7806 (3)	0.0405 (13)
H6	1.0270	0.9292	0.7942	0.049*
C7	0.6070 (4)	0.6735 (4)	0.8423 (3)	0.0395 (13)
H7	0.5763	0.6032	0.8535	0.047*
C8	0.5601 (5)	0.7450 (4)	0.8884 (4)	0.0517 (15)
H8	0.4938	0.7336	0.9363	0.062*
С9	0.6287 (5)	0.8348 (4)	0.8508 (4)	0.0464 (14)
Н9	0.6189	0.8990	0.8677	0.056*
C10	0.8495 (4)	0.4452 (3)	0.8627 (3)	0.0290 (11)
C11	0.8971 (4)	0.3351 (3)	0.8753 (3)	0.0315 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C12	0.8898 (4)	0.2849 (4)	0.8067 (4)	0.0390 (12)
H12	0.8505	0.3203	0.7527	0.047*
C13	0.9382 (5)	0.1845 (4)	0.8150 (4)	0.0497 (14)
H13	0.9317	0.1516	0.7673	0.060*
C14	0.9959 (5)	0.1326 (4)	0.8926 (4)	0.0495 (15)
H14	1.0297	0.0639	0.8986	0.059*
C15	1.0041 (4)	0.1810 (4)	0.9615 (4)	0.0470 (14)
H15	1.0442	0.1453	1.0148	0.056*
C16	0.9548 (4)	0.2809 (4)	0.9540 (3)	0.0374 (12)
H16	0.9603	0.3126	1.0027	0.045*
C17	0.8004 (4)	0.4727 (3)	0.9494 (3)	0.0298 (11)
C18	0.7310 (4)	0.3970 (4)	1.0255 (3)	0.0362 (12)
H18	0.7154	0.3280	1.0211	0.043*
C19	0.6847 (4)	0.4219 (4)	1.1073 (4)	0.0461 (14)
H19	0.6373	0.3698	1.1585	0.055*
C20	0.7062 (4)	0.5207 (4)	1.1154 (4)	0.0475 (14)
H20	0.6737	0.5374	1.1716	0.057*
C21	0.7757 (5)	0.5958 (4)	1.0410 (4)	0.0484 (14)
H21	0.7913	0.6645	1.0461	0.058*
C22	0.8228 (4)	0.5716 (4)	0.9591 (3)	0.0417 (13)
H22	0.8712	0.6236	0.9087	0.050*
C23	0.5401 (4)	0.6507 (3)	0.6241 (3)	0.0265 (10)
C24	0.5229 (4)	0.7597 (4)	0.6139 (3)	0.0334 (11)
H24	0.5853	0.8036	0.6149	0.040*
C25	0 4153 (4)	0.8042 (4)	0.6023 (3)	0.0389(12)
H25	0 4046	0.8792	0.5933	0.047*
C26	0.3236(4)	0.0792	0.6035 (3)	0.0371(12)
H26	0.2497	0 7722	0.5958	0.045*
C27	0.3386(4)	0.6325(4)	0.6157 (3)	0.0352(12)
H27	0.2752	0.5884	0.6172	0.042*
C28	0.4466 (4)	0.5878 (3)	0.6259 (3)	0.0313(11)
H28	0.4568	0.5129	0.6343	0.0315 (11)
C29	0.7223(4)	0.6166 (3)	0.4899 (3)	0.0281(11)
C30	0.7223(4) 0.6531(4)	0.6761(3)	0.4225(3)	0.0251(11) 0.0352(12)
H30	0.5815	0.7024	0.4443	0.0332 (12)
C31	0.6870 (5)	0.6977(4)	0.3238 (3)	0.0422(13)
H31	0.6388	0.7389	0.2783	0.051*
C32	0.0388	0.7589	0.2783	0.031
H32	0.7505 (5)	0.6762	0.2215 (4)	0.051*
C33	0.8144 0.8588 (4)	0.5702	0.2233	0.031
H33	0.0287	0.5680	0.3350	0.0377 (12)
C34	0.3287 0.8257 (4)	0.5089	0.5555 (3)	0.045°
U34	0.8237 (4)	0.5770 (5)	0.4333 (3)	0.0299 (11)
C35	0.6772(4)	0.5504	0.5000	0.030
C36	0.0372(7) 0.6827(4)	0.7502(3)	0.0702(3)	0.0233(10) 0.0337(12)
U30 H36	0.0027 (+) 0.7174	0.3772 (3)	0.5200 (3)	0.0337(12) 0.040*
C37	0.6578 (1)	0.7020	0.5005	0.0+0
UJ7	0.0570 (4)	0.2004 (4)	0.0720 (4)	0.0301(12) 0.046*
C38	0.6057 (4)	0.2170 0.2287 (Λ)	0.0505	0.0401 (12)
0.50	0.0037 (+)	0.2207 (7)	0.7070(+)	0.0401(13)

H38	0.5869	0.1536	0.7976	0.048*
C39	0.5806 (4)	0.3003 (4)	0.8176 (3)	0.0400 (13)
H39	0.5448	0.2743	0.8834	0.048*
C40	0.6073 (4)	0.4101 (4)	0.7731 (3)	0.0360 (12)
H40	0.5912	0.4584	0.8092	0.043*
C41	0.3203 (7)	0.0075 (7)	0.9844 (5)	0.120 (3)
H41A	0.2559	-0.0211	1.0365	0.180*
H41B	0.3228	0.0870	0.9648	0.180*
H41C	0.3926	-0.0218	1.0078	0.180*
C42	0.3049 (6)	-0.0244 (6)	0.9012 (5)	0.092 (2)
H42A	0.3008	-0.1047	0.9212	0.110*
H42B	0.2315	0.0047	0.8779	0.110*
C43	0.3815 (7)	-0.0031 (5)	0.7392 (5)	0.088 (2)
H43A	0.3098	0.0316	0.7164	0.105*
H43B	0.3744	-0.0822	0.7518	0.105*
C44	0.4811 (6)	0.0426 (5)	0.6632 (5)	0.086 (2)
H44A	0.4699	0.0298	0.6031	0.128*
H44B	0.5517	0.0073	0.6856	0.128*
H44C	0.4874	0.1210	0.6505	0.128*
N1	0.8145 (3)	0.8235 (3)	0.5848 (3)	0.0284 (9)
N2	0.8118 (3)	0.9105 (3)	0.6168 (3)	0.0306 (9)
N3	0.9472 (3)	0.7371 (3)	0.7369 (2)	0.0291 (9)
N4	0.9270 (3)	0.8335 (3)	0.7515 (3)	0.0327 (9)
N5	0.7002 (3)	0.7161 (3)	0.7804 (3)	0.0299 (9)
N6	0.7130 (3)	0.8180 (3)	0.7856 (3)	0.0338 (9)
N7	0.8548 (3)	0.5152 (3)	0.7752 (3)	0.0303 (9)
H7A	0.8889	0.4811	0.7365	0.036*
N8	0.9577 (3)	0.6233 (3)	0.5978 (3)	0.0336 (10)
N9	1.0225 (3)	0.6845 (3)	0.5335 (3)	0.0347 (10)
N10	1.0865 (4)	0.7402 (3)	0.4696 (4)	0.0632 (15)
O1	0.3970 (3)	0.0154 (3)	0.8253 (3)	0.0591 (10)
P1	0.68709 (10)	0.59726 (9)	0.62088 (8)	0.0255 (3)
Ru1	0.82112 (3)	0.66797 (3)	0.68486 (3)	0.02500 (12)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
B1	0.045 (4)	0.035 (3)	0.041 (4)	0.000 (3)	-0.006 (3)	-0.019 (3)
C1	0.045 (3)	0.033 (3)	0.025 (3)	-0.002 (2)	-0.004 (2)	-0.006 (2)
C2	0.056 (4)	0.030 (3)	0.030 (3)	-0.003 (2)	-0.005 (3)	0.004 (2)
C3	0.050 (3)	0.023 (3)	0.050 (4)	0.000 (2)	-0.010 (3)	-0.003 (2)
C4	0.032 (3)	0.041 (3)	0.026 (3)	0.000 (2)	0.000 (2)	0.000 (2)
C5	0.032 (3)	0.061 (3)	0.031 (3)	-0.011 (3)	-0.006 (2)	-0.010(3)
C6	0.041 (3)	0.050 (3)	0.030 (3)	-0.018 (3)	-0.002 (2)	-0.013 (3)
C7	0.033 (3)	0.054 (3)	0.033 (3)	-0.011 (3)	0.004 (2)	-0.018 (3)
C8	0.040 (3)	0.072 (4)	0.052 (4)	-0.004 (3)	0.008 (3)	-0.040(3)
C9	0.046 (3)	0.054 (3)	0.054 (4)	0.004 (3)	-0.003 (3)	-0.040(3)
C10	0.023 (3)	0.032 (3)	0.028 (3)	-0.002 (2)	-0.005 (2)	-0.004 (2)

C11	0.026 (3)	0.030 (3)	0.034 (3)	-0.003 (2)	-0.002 (2)	-0.005 (2)
C12	0.040 (3)	0.034 (3)	0.039 (3)	0.001 (2)	-0.010 (3)	-0.007 (2)
C13	0.062 (4)	0.031 (3)	0.057 (4)	-0.001 (3)	-0.005 (3)	-0.017 (3)
C14	0.053 (4)	0.032 (3)	0.055 (4)	0.008 (3)	-0.004 (3)	-0.007 (3)
C15	0.048 (3)	0.043 (3)	0.038 (3)	0.010 (3)	-0.007 (3)	0.003 (3)
C16	0.041 (3)	0.038 (3)	0.028 (3)	0.005 (2)	-0.006 (2)	-0.004 (2)
C17	0.029 (3)	0.033 (3)	0.024 (3)	-0.002 (2)	-0.006 (2)	-0.003 (2)
C18	0.031 (3)	0.036 (3)	0.037 (3)	-0.002 (2)	-0.003 (2)	-0.007 (2)
C19	0.039 (3)	0.052 (3)	0.038 (3)	-0.006 (3)	0.007 (3)	-0.007 (3)
C20	0.045 (3)	0.065 (4)	0.034 (3)	0.002 (3)	0.000 (3)	-0.020 (3)
C21	0.062 (4)	0.047 (3)	0.038 (3)	-0.013 (3)	0.000 (3)	-0.018 (3)
C22	0.049 (3)	0.041 (3)	0.031 (3)	-0.013 (3)	-0.002 (3)	-0.005 (2)
C23	0.030 (3)	0.031 (2)	0.017 (2)	0.002 (2)	-0.001 (2)	-0.008 (2)
C24	0.034 (3)	0.037 (3)	0.034 (3)	-0.002 (2)	-0.004 (2)	-0.016 (2)
C25	0.044 (3)	0.034 (3)	0.039 (3)	0.013 (2)	-0.009 (3)	-0.012 (2)
C26	0.029 (3)	0.048 (3)	0.033 (3)	0.007 (2)	-0.003 (2)	-0.014 (3)
C27	0.030 (3)	0.045 (3)	0.032 (3)	-0.004 (2)	0.000 (2)	-0.017 (2)
C28	0.036 (3)	0.028 (2)	0.026 (3)	0.000 (2)	0.000 (2)	-0.007 (2)
C29	0.037 (3)	0.020 (2)	0.025 (3)	-0.004 (2)	0.001 (2)	-0.007 (2)
C30	0.038 (3)	0.034 (3)	0.032 (3)	0.000 (2)	-0.005 (2)	-0.009 (2)
C31	0.053 (4)	0.043 (3)	0.027 (3)	0.001 (3)	-0.009 (3)	-0.006 (2)
C32	0.057 (4)	0.045 (3)	0.023 (3)	-0.010 (3)	0.008 (3)	-0.011 (2)
C33	0.038 (3)	0.038 (3)	0.036 (3)	-0.002 (2)	0.009 (3)	-0.016 (2)
C34	0.033 (3)	0.032 (3)	0.025 (3)	-0.002 (2)	-0.005 (2)	-0.010 (2)
C35	0.025 (2)	0.024 (2)	0.028 (3)	0.0003 (19)	-0.004 (2)	-0.011 (2)
C36	0.039 (3)	0.028 (3)	0.028 (3)	-0.004 (2)	0.000 (2)	-0.004 (2)
C37	0.046 (3)	0.030 (3)	0.042 (3)	-0.003 (2)	-0.005 (3)	-0.019 (2)
C38	0.051 (3)	0.024 (3)	0.043 (3)	-0.005 (2)	-0.008 (3)	-0.007 (2)
C39	0.052 (3)	0.038 (3)	0.022 (3)	-0.009 (3)	0.001 (2)	-0.003 (2)
C40	0.046 (3)	0.032 (3)	0.028 (3)	-0.004 (2)	0.002 (2)	-0.010 (2)
C41	0.107 (7)	0.195 (9)	0.076 (6)	-0.029 (6)	0.016 (5)	-0.079 (6)
C42	0.066 (5)	0.120 (6)	0.096 (6)	-0.022 (4)	0.010 (4)	-0.052 (5)
C43	0.117 (6)	0.081 (5)	0.077 (5)	-0.035 (4)	-0.011 (5)	-0.040 (4)
C44	0.135 (7)	0.058 (4)	0.061 (5)	-0.026 (4)	-0.006 (5)	-0.017 (3)
N1	0.030 (2)	0.024 (2)	0.030 (2)	0.0015 (17)	-0.0039 (18)	-0.0082 (18)
N2	0.038 (2)	0.022 (2)	0.032 (2)	-0.0003 (17)	-0.0050 (19)	-0.0090 (18)
N3	0.028 (2)	0.032 (2)	0.023 (2)	-0.0001 (18)	-0.0013 (18)	-0.0033 (18)
N4	0.040 (2)	0.029 (2)	0.030 (2)	-0.0026 (19)	-0.0062 (19)	-0.0100 (18)
N5	0.028 (2)	0.036 (2)	0.029 (2)	0.0026 (18)	-0.0040 (18)	-0.0154 (19)
N6	0.034 (2)	0.036 (2)	0.037 (2)	0.0011 (19)	-0.003 (2)	-0.021 (2)
N7	0.031 (2)	0.030 (2)	0.029 (2)	-0.0027 (17)	-0.0010 (18)	-0.0105 (19)
N8	0.035 (2)	0.028 (2)	0.031 (2)	0.0002 (19)	0.008 (2)	-0.0052 (19)
N9	0.030 (2)	0.036 (2)	0.044 (3)	0.006 (2)	-0.007 (2)	-0.021 (2)
N10	0.051 (3)	0.050 (3)	0.074 (4)	-0.013 (2)	0.029 (3)	-0.014 (3)
01	0.061 (3)	0.061 (2)	0.062 (3)	0.004 (2)	-0.009 (2)	-0.030 (2)
P1	0.0300 (7)	0.0231 (6)	0.0225 (7)	0.0018 (5)	-0.0013 (5)	-0.0075 (5)
Ru1	0.0269 (2)	0.0245 (2)	0.0208 (2)	0.00069 (15)	-0.00016 (16)	-0.00537 (16)

Geometric parameters (Å, °)

B1—N4	1.529 (7)	С25—Н25	0.9500
B1—N2	1.541 (6)	C26—C27	1.374 (6)
B1—N6	1.548 (6)	С26—Н26	0.9500
B1—H1'	1.0000	C27—C28	1.384 (6)
C1—N1	1.333 (5)	С27—Н27	0.9500
C1—C2	1.392 (6)	C28—H28	0.9500
С1—Н1	0.9500	C29—C30	1.386 (6)
C2—C3	1.362 (6)	C29—C34	1.393 (6)
С2—Н2	0.9500	C29—P1	1.845 (4)
C3—N2	1.344 (5)	C30—C31	1.384 (6)
С3—Н3	0.9500	С30—Н30	0.9500
C4—N3	1.333 (5)	C31—C32	1.377 (7)
C4—C5	1.386 (6)	C31—H31	0.9500
C4—H4	0.9500	C32—C33	1.384 (7)
C5—C6	1.374 (6)	С32—Н32	0.9500
С5—Н5	0.9500	C33—C34	1.371 (6)
C6—N4	1.337 (5)	С33—Н33	0.9500
С6—Н6	0.9500	С34—Н34	0.9500
C7—N5	1.323 (5)	C35—C36	1.384 (6)
С7—С8	1.385 (6)	C35—C40	1.390 (6)
С7—Н7	0.9500	C35—P1	1.840 (4)
C8—C9	1.353 (7)	C36—C37	1.398 (6)
С8—Н8	0.9500	С36—Н36	0.9500
C9—N6	1.342 (5)	C37—C38	1.363 (6)
С9—Н9	0.9500	С37—Н37	0.9500
C10—N7	1.299 (5)	C38—C39	1.378 (6)
C10—C17	1.473 (6)	С38—Н38	0.9500
C10—C11	1.487 (6)	C39—C40	1.387 (6)
C11—C12	1.389 (6)	С39—Н39	0.9500
C11—C16	1.395 (6)	C40—H40	0.9500
C12—C13	1.384 (6)	C41—C42	1.454 (8)
C12—H12	0.9500	C41—H41A	0.9800
C13—C14	1.376 (7)	C41—H41B	0.9800
C13—H13	0.9500	C41—H41C	0.9800
C14—C15	1.378 (7)	C42—O1	1.411 (7)
C14—H14	0.9500	C42—H42A	0.9900
C15—C16	1.385 (6)	C42—H42B	0.9900
C15—H15	0.9500	C43—O1	1.405 (7)
C16—H16	0.9500	C43—C44	1.483 (8)
C17—C22	1.383 (6)	C43—H43A	0.9900
C17—C18	1.395 (6)	C43—H43B	0.9900
C18—C19	1.382 (6)	C44—H44A	0.9800
C18—H18	0.9500	C44—H44B	0.9800
C19—C20	1.369 (7)	C44—H44C	0.9800
С19—Н19	0.9500	N1—N2	1.366 (4)
C20—C21	1.380 (7)	N1—Ru1	2.077 (3)

C20—H20	0.9500	N3—N4	1.354 (5)
C21—C22	1.382 (6)	N3—Ru1	2.114 (4)
C21—H21	0.9500	N5—N6	1.372 (5)
C22—H22	0.9500	N5—Ru1	2.084 (4)
C23—C28	1.384 (6)	N7—Ru1	2.056 (3)
C23—C24	1.389 (6)	N7—H7A	0.8800
C23—P1	1.840 (4)	N8—N9	1.200 (5)
C24—C25	1.382 (6)	N8—Ru1	2.097 (4)
C24—H24	0.9500	N9—N10	1.164 (5)
C25—C26	1.373 (6)	P1—Ru1	2.3070 (13)
N4—B1—N2	107.3 (4)	C30—C31—H31	119.9
N4—B1—N6	108.1 (4)	C31—C32—C33	119.7 (5)
N2—B1—N6	107.8 (4)	С31—С32—Н32	120.1
N4—B1—H1'	111.1	С33—С32—Н32	120.1
N2—B1—H1'	111.1	C34—C33—C32	120.0 (5)
N6—B1—H1'	111.1	С34—С33—Н33	120.0
N1—C1—C2	110.0 (4)	С32—С33—Н33	120.0
N1—C1—H1	125.0	C33—C34—C29	121.2 (4)
C2—C1—H1	125.0	С33—С34—Н34	119.4
C3—C2—C1	105.3 (4)	С29—С34—Н34	119.4
С3—С2—Н2	127.3	C36—C35—C40	118.1 (4)
C1—C2—H2	127.3	C36—C35—P1	123.5 (3)
N2—C3—C2	108.8 (4)	C40—C35—P1	118.4 (3)
N2—C3—H3	125.6	C35—C36—C37	120.7 (4)
С2—С3—Н3	125.6	С35—С36—Н36	119.7
N3—C4—C5	110.2 (5)	С37—С36—Н36	119.7
N3—C4—H4	124.9	C38—C37—C36	120.5 (4)
С5—С4—Н4	124.9	С38—С37—Н37	119.7
C6—C5—C4	104.7 (4)	С36—С37—Н37	119.7
С6—С5—Н5	127.6	C37—C38—C39	119.5 (4)
С4—С5—Н5	127.6	С37—С38—Н38	120.3
N4—C6—C5	108.7 (4)	С39—С38—Н38	120.3
N4—C6—H6	125.6	C38—C39—C40	120.5 (4)
С5—С6—Н6	125.6	С38—С39—Н39	119.8
N5—C7—C8	111.0 (5)	С40—С39—Н39	119.8
N5—C7—H7	124.5	C39—C40—C35	120.7 (4)
С8—С7—Н7	124.5	С39—С40—Н40	119.6
C9—C8—C7	105.3 (5)	С35—С40—Н40	119.6
С9—С8—Н8	127.4	C42—C41—H41A	109.5
С7—С8—Н8	127.4	C42—C41—H41B	109.5
N6—C9—C8	108.7 (4)	H41A—C41—H41B	109.5
N6—C9—H9	125.7	C42—C41—H41C	109.5
С8—С9—Н9	125.7	H41A—C41—H41C	109.5
N7—C10—C17	122.0 (4)	H41B—C41—H41C	109.5
N7—C10—C11	118.8 (4)	O1—C42—C41	110.5 (6)
C17—C10—C11	119.2 (4)	O1—C42—H42A	109.6
C12—C11—C16	117.9 (4)	C41—C42—H42A	109.6
C12—C11—C10	120.9 (4)	O1—C42—H42B	109.6
C16—C11—C10	121.2 (4)	C41—C42—H42B	109.6

C13—C12—C11	121.7 (5)	H42A—C42—H42B	108.1
C13—C12—H12	119.2	O1—C43—C44	109.7 (6)
C11—C12—H12	119.2	O1—C43—H43A	109.7
C14—C13—C12	119.7 (5)	C44—C43—H43A	109.7
C14—C13—H13	120.1	O1—C43—H43B	109.7
C12-C13-H13	120.1	C44—C43—H43B	109.7
C13—C14—C15	119.5 (5)	H43A—C43—H43B	108.2
C13-C14-H14	120.2	C43—C44—H44A	109.5
C15-C14-H14	120.2	C43—C44—H44B	109.5
C14—C15—C16	121.0 (5)	H44A—C44—H44B	109.5
C14—C15—H15	119.5	C43—C44—H44C	109.5
C16—C15—H15	119.5	H44A—C44—H44C	109.5
C15-C16-C11	120.2 (5)	H44B-C44-H44C	109.5
C15-C16-H16	119.9	C1—N1—N2	106.6 (3)
C11—C16—H16	119.9	C1—N1—Ru1	134.0 (3)
C22—C17—C18	118.2 (4)	N2—N1—Ru1	118.9 (3)
C22-C17-C10	121.9 (4)	C3—N2—N1	109.2 (4)
C18—C17—C10	119.9 (4)	C3—N2—B1	129.8 (4)
C19—C18—C17	120.4 (4)	N1—N2—B1	120.3 (4)
C19—C18—H18	119.8	C4—N3—N4	106.8 (4)
C17-C18-H18	119.8	C4—N3—Ru1	133.6 (3)
C20-C19-C18	120.9 (5)	N4—N3—Ru1	119.6 (3)
С20—С19—Н19	119.6	C6—N4—N3	109.5 (4)
C18—C19—H19	119.6	C6—N4—B1	131.0 (4)
C19—C20—C21	119.3 (5)	N3—N4—B1	119.2 (4)
C19—C20—H20	120.3	C7—N5—N6	105.6 (4)
C21—C20—H20	120.3	C7—N5—Ru1	136.8 (3)
C20—C21—C22	120.3 (5)	N6—N5—Ru1	117.6 (3)
C20—C21—H21	119.9	C9—N6—N5	109.5 (4)
C22—C21—H21	119.9	C9—N6—B1	129.2 (4)
C21—C22—C17	121.0 (4)	N5—N6—B1	121.3 (4)
C21—C22—H22	119.5	C10—N7—Ru1	149.3 (3)
С17—С22—Н22	119.5	C10—N7—H7A	105.4
C28—C23—C24	118.6 (4)	Ru1—N7—H7A	105.4
C28—C23—P1	121.3 (3)	N9—N8—Ru1	125.9 (3)
C24—C23—P1	119.7 (3)	N10—N9—N8	176.9 (5)
C25—C24—C23	120.1 (4)	C43—O1—C42	113.3 (5)
C25—C24—H24	120.0	C23—P1—C35	100.84 (19)
C23—C24—H24	120.0	C23—P1—C29	100.2 (2)
C26—C25—C24	120.6 (4)	C35—P1—C29	103.21 (19)
C26—C25—H25	119.7	C23—P1—Ru1	118.60 (15)
C24—C25—H25	119.7	C35—P1—Ru1	116.39 (14)
C25—C26—C27	119.9 (5)	C29—P1—Ru1	115.06 (14)
C25—C26—H26	120.0	N7—Ru1—N1	170.95 (14)
С27—С26—Н26	120.0	N7—Ru1—N5	99.27 (14)
C26—C27—C28	119.7 (5)	N1—Ru1—N5	88.06 (14)
С26—С27—Н27	120.1	N7—Ru1—N8	79.20 (14)
С28—С27—Н27	120.1	N1—Ru1—N8	92.89 (14)
C23—C28—C27	121.0 (4)	N5—Ru1—N8	173.15 (15)

C23—C28—H28	119.5	N7—Ru1—N3	90.87 (14)
С27—С28—Н28	119.5	N1—Ru1—N3	84.22 (14)
C30—C29—C34	118.1 (4)	N5—Ru1—N3	86.64 (14)
C30—C29—P1	122.1 (4)	N8—Ru1—N3	86.71 (15)
C34—C29—P1	119.6 (3)	N7—Ru1—P1	90.93 (10)
C31—C30—C29	120.8 (5)	N1—Ru1—P1	93.73 (10)
С31—С30—Н30	119.6	N5—Ru1—P1	94.99 (10)
С29—С30—Н30	119.6	N8—Ru1—P1	91.71 (11)
C32—C31—C30	120.1 (5)	N3—Ru1—P1	177.35 (10)
С32—С31—Н31	119.9		

